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A THEORETICAL INVESTIGATION OF LONGITUDINAL STABILITY OF AIRPLANES WITH FREE
CONTROLS INCLUDING EFFECT OF FRICTION IN CONTROL SYSTEM

By Harry GrEENBERG and LEONARD STERNFIELD

SUMMARY

The relation between the elevator hinge-moment parameters
and the control forces for changes in forward speed and in maneu-
vers 18 shown for several values of static stability and elevator
mass balance.

The stability of the short-period oscillations 18 shown as @
series of boundaries giving the limits of the stable region in
terms of the elevator hinge-moment parameters. The effects
of static stability, elevator moment of inertia, elevator mass
unbalance, and airplane density are also considered. Dynamic
instability is likely to occur if there is mass unbalance of the
elevator control system combined with @ small restoring ten-
dency (high aerodynamic balance). This instability can be
prevented by a rearrangement of the unbalancing weighis which,
however, involves an increase of the amount of weight necessary.
It can also be prevented by the addition of viscous friction fo
the elevator control system provided the airplane center of
gravity 18 not behind a certain critical position.

For high values of the density parameter, which correspond
to high altitudes of flight, the addition of moderate amounts of
viscous friction may be destabilizing even when the airplane is
statically stable. In this case, increasing the viscous friction
makes the oscillation stable again. The condition in which
viscous friction causes dynamic instability of a statically stable
airplane is limited to a definite range of hinge-moment param-
eters. It 18 shown that, when viscous friction causes increas-
ing oscillations, solid friction will produce steady oscillations
having an amplitude proportional to the amount of friction.

INTRODUCTION .

The effects of aerodynamic balance and mass unbalance
of the elevator on the dynamic stability of the airplane are
discussed in a previous report on control-free stability (refer-
ence 1). It was found theoretically in reference 1 and verified
in flight (reference 2) that, if the elevator is too closely
balanced aerodynamically and has a sufficient amount of
mass unbalance (which tends to depress the elevator), in-
creasing oscillations of short period may occur. Other flight
tests (reference 3) showed, however, that mass unbalance of
the elevator control system improves the static stability of
an airplane, that is, increases the slope of the curve of stick
foree against speed in level flight and of the curve of stick

o

force against normal acceleration in maneuvers. Subse-
quent work (reference 4) has indicated that a control surface
with positive floating tendency (tendency to float against
the relative wind), when used as a rudder, is effective in im-
proving control-free static stability. A theoretical analysis
(reference 5) showed that a rudder having a positive floating
ratio may, under the influence of solid friction in the confrol
system, build up steady oscillations of the airplane and
rudder. These steady oscillations have been observed in
flight tests (reference 6). These results suggested an investi-
gation of the behavior of an airplane equipped with an
elevator having a positive floating tendency. This type of
elevator was not considered in any of the previous investi-
gations.

The purpose of the present report is to make a theoretical
analysis of the control-free longitudinal stability of an air-
plane, which takes account of this current trend toward a
positive floating tendency in control-surface design and
covers, in general, a much wider range of parameters than
the investigation of reference 1. These parameters include,
for the elevator control system, restoring tendency, floating
tendency, mass unbalance (bobweight control), moment of
inertia, and viscous and solid friction and, for the airplane,
density and center-of-gravity position.

The method of analysis of dynamic stability is based on
the classical theory of Bryan and Bairstow extended to in-
clude movements of the controls and their couplings with
the airplane motions. Friction is treated in the same way
as in the approximate method of reference 5, in which solid
friction is replaced by an equivalent viscous friction.

Before the analysis of dynamic stability is presented, some
discussion is given of the effect of the various parameters on
the elevator forces for trim and for acceleration—charac-
teristics considered important to flying qualtities. The
stability of the short-period oscillations, with and without
friction in the control system, is then considered. The effects
of weights added to the system to modify the static and dy-
namic stability are discussed. The trends to be expected
are illustrated by a series of calculations and charts based
on & typical airplane. The stability of the long-period
(phugoid) oscillations is not discussed because of its relative
unimportance.
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SYMBOLS

wing aspect ratio
tail aspect ratio

A, B, C, E, F coefficients in stability equation

A,
A,
b
Ch
Gy,
Cx
C.
Cr,
Cn
¢
Cq
D
F
F,
F,
F,
g9
H
H,
H,
H,
H0=.H¢+7'Hg
h=rh,+h.
he=—2Es
oS
b=t
PO LL
I,
I,
il=i¢—ri‘
i2='ia+7&i:
;= 81,
S
. 81,
=08
Yy
_2ky
L
Ly
_2L
L= p

wing span
elevator hinge-moment coefficient

_H
(fors-)

frictional hinge-moment -coefficient

H,
(% PVESccc)

applied hinge-moment coefficient

airplane lift coeﬂicient( ZZ*_S'E)

lift coefficient of tail

pitching-moment coefficient about airplane
center of gravity

wing chord

elevator chord

differential operator (%)

constant term in stability equation
gtick force; positive for pull

stick-force gradient in maneuvers (‘g;‘)

stick-force gradient for level flight (%%

acceleration of gravity

hinge moment; positive when tends to de-
press trailing edge

mass moment of elevator about its hinge;
positive when tailheavy

mass moment of control stick about its pivot;
positive when stick tends to move forward

frictional hinge moment

moment of inertia of elevator about its

moment of inertia of control stick about its
pivot

radius of gyration of qirplane about Y-axis

distance between airplane center of gravitj'
and elevator hinge

L
M

length of control stick

pitching moment about airplanc center_ of
gravity

mass of airplane

number of cycles required for oscillation to
damp to half amplitude

normal acceleration per ¢ of airplane due to
curvature of flight path; accelerometer read-
ing minus component of gravity force

period of oscillation, seconds

dynamic pressure

elevator area

tail area

wing area

distance in half-chords (2Vi#/c)

time required for oscillation to demp to half
amplitude, seconds

time

forward velocity

change in forward velocity from trimmed value

weight of airplane

longitudinal force; positive forward

distance of center of gravity from aerodyne-
mic center; positive when center of gravity
is ahead of aerodynamic center

normal force; positive downward

angle of attack

angle of attack at tail

deflection of elevator; positive for downward
motion of trailing edge

amplitude of elevator oscillation

angle of downwash

control gearing (6,/8,)

angle of piteh of airplane

deflection of control stick; positive for for-
ward motion of stick

complex root of stability equation

real and imaginary parts, respectively, of A

airplane-density parameter (m/pSyb)

mass density of air

‘Whenever u, V, «, a, 8, 8, Da, D8, Ds, and D*« are used

as subscripts, a derivative is indicated.

For oxample,

Xy=%‘§ and C’,,m=%c;—§- Whenever a dot is used above a

symbol, it denotes differentiation with respect to time.
All angles are measured in radians.

METHOD OF ANALYSIS

Four degrees of freedom—forward speed, angle of attack,
angle of pitch, and elevator deflection—are generally in-
volved in the problem of control-free stability. To each
degree of freedom, there. corresponds an equation of equilib-
rium between inertial and aerodynamic forces or moments.
By use of wind axes, the four equations become, for level

flight,
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XoAV+X o + X8 =mAV
ZyAV4Z e =mV(e—6)
MyAV+Moa+-Maa+ Mg +Mio+Mpd,+ Mis,=mky
HyAV+Hoo+ Hia+Hzé +Hib+Ho+ Hid, =I,6-+5)+H(Va—Vi+L8) +rlL(r5,—0)+H,(Va— V)]
which can be written in nondimensional form as
(—zn 24, 0D)u—2zq0 +% 0 =0
03
OLu+<T='+2A,,yD> o —24,uD6 =0

f (1)
Ot (Coyt Oy Dt O DV + (CoupgD—24,5k D08 4 (Cogt-Copg D)3, =0
Ch 4+ (Ch, 4 Cry D—hD~+Chpp D)t (Cop D+ HD—h D —, D06+ (Cay+ Oy D—iaD3,=0

In applying equations (1) to dynamic stability, certain approximations may be made. For instance, short-period oscil-
lations (of the order of 1 sec) involve negligible changes in forward speed, which may therefore be neglected in studying the
short-period oscillations. In fact, the period and damping of these oscillations can be obtained to a high degree of accuracy

by using only the last three of the equations (1) and setting u=0.

Equations (1) then become
Cr,
('2_+2Awl-‘D) a
(Oiﬂa'i' O“DaD_I_ 0,. a.Dq) a

—2A,1D8

+ (Cnpg—2 A,k D) DB

=0
_I_ (Oﬂa—l_ OmDA-D)ac =0 (2)

(G (Chpy—B) D+ Ol D+ [Ch g+ h— (hda~+i) DYDB+- (Cr, - Copy D—1D95,=0

By setting . )
a= apert

D6= (DB) o™

e =505“

it can be shown (reference 7) that A must be a root of a quartic equation formed by writing

G,
7 + 2Aw#)‘

Oma+ 67”‘Dak-l_ 0’"D2aRz
Oha+ (ORDa— h) )\+ C’ana)\z

The resulting stability equation may be written as

—'ZAwp'
Compg—2 A2
Okpg_l_h_ (h'dlh_l_'i’l)k 0k5+0bD3)\_'i2x2

0
Oﬂa_l_ Oﬂmx =O

AN+ BN+ ONH-EN+HF=0 ®3)
where A, B, C, E, and F are functions of the stability derivatives.

The study of the effects of different parameters on the
control-free stability was made by a series of computations
for an average airplane having the characteristics given
hereinafter. The current trend toward a positive floating
tendency in control-surface design suggests the use of C’,,a‘ and
Oy, as the fundamental variables to be used in expressing
stability and control characteristics. The results are pre-
sented as & series of figures that show the relations between
Oba, and Oy, which, with the other derivatives fixed, satisfy
the conditions for neutral dynamic stability and neutral
static stability.

A curve for neutral dynamic stability is the boundary
dividing the region of increasing oscillations from the region

of damped oscillations and is obtained from Routh’s
discriminant
BCE— AR*—FB*=0
The condition for neutral static stability is that
F=0

The stability equation (3) has four roots. A pair of
complex roots indicates an oscillatory mode and a real root
indicates an aperiodic mode. The real part of the complex
root determines the damping; the imaginary part determines

the period of the oscillations. More specifically, if there is
& pair of complex roots

A=¢+1g



332

the period in seconds is given by

REPORT NO.

¢ 2w
P=sp

and the time in seconds to damp to half amplitude is given by

0.693
Ty ity 2853

For an airplene at constant speed, there may be two
oscillatory modes, there may be only one oscillatory mode, or
the motion may be entirely aperiodic. In cases in which
there are oscillatory components, one of the oscillations may
be poorly damped and even become unstable.

The average airplane on which the calculations of this
report are based is of conventional design. The char-
acteristics of the airplane are

A e e e m o 6
Ky e e e e e e e e e L5
Ly I

F B et 3.3
T e e e e m e mmmmm e e m—— e m——m— 1
S8 m e o e e 0.18
Ly T oo e e 2
S e/ b e e e 0. 56
A e 4.5

The basic stability derivatives and parameters obtained from

these airplane characteristics by methods shown in appendix A

are

e - emmmm e emmmmen 43 Coppoocmcmmcmemmee —15.3

o/ — 3.8 Cmpprocmmmcmmmmmae -89
bl

€ e 0.486 Chpam------~------ 3. 22y,

e — —1.54  Coptymcommomemmee 23.2

Conpgmnmmmmmmmmm e m e —0.97  Chpaymemmmccemmee —10.55C4

Chps (with no friction)._- —1

The following parameters of the airplane were varied:

© airplane-density parameter

Cn, control-fixed static-stability parameter

The following parameters of the elevator control system
were varied:
G, floating tendency

C,, restoring tendency

a

Ch,, elevator-damping parameter

T moment-of-inertia parameter of elevator about its
hinge

T moment-of-inertia parameter of control stick about
its hinge

h mass-moment parameter of elevator control system
about elevator hinge

h, mass-moment parameter of elevator alone about its
hinge

As has been pointed out, the stability boundaries were
plotted, in most cases, in terms of Oka, and C,, as the varia-

bles of the coordinate system. In analyzing the effects of
friction in the control system, C, and C,,, were used as the

plotted variables in some figures whereas O'az and C;, were
used in others. The effect of the other parameters is found
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by varying them one at a time, through a range of values, and
showing for each parameter a series of stability boundaries.
The size of the airplane, wing loading, and altitude are

combined in the parameter u, which is pS’l,,b' A variation

in p thus could be due to a variation in size, wing loading,
or altitude, or any combination of these. The range of values
of s covered in the present report and some typical correspond-
ing values of wing loading, altitude, and size are given in the
following table:

Mcan
Wing
n loading, Altitude (It) W hﬁ
(bisq 15) b
4.17 40 Sealevel ... 21
12.5 40 Bealevel......__.__.. 7
31.5 40 33,000, et 7

The range of C,, and the corresponding center-of-gravity
positions are as follows:

Taje.
Cm (fraction of
a mean wing
chord)
-0.232 0.05
0 0
232 —.05

The ranges of values of the other parameters, for a small
airplane (chord, 7 ft), are as follows:

Moment of
inertia of ele-
vator control

(s;ug-rt P

fo and i,

2O
pro
oo

Stiek foree (1b)

At sen lovel| At 33,000 ft

0 0
10 37 1235

dH/ds
v
Capy | (014100 mph/deg/seo)

At sea level | At 33,000 {t

—10 5.85 1.95
—100 58.5 10.6

STATIC STABILITY AND RELATION TO CONTROL FORCES

The connection between the static stability and the
airplane and control parameters is established to assist
in the interpretation of the results obtained hereinafter.
Equations (1) can be applied to static stability by setting
all terms containing D and D? equal to zero and solving the
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resulting equations simultaneously -for the variation in
forward speed with an applied elevator hinge moment.
For level flight, 9 is also zero and the resulting equations are

G
Cit- —5—"—' a

O+ CrpotCade=0
Ohuu_l_. C’;,aa—l- 0;,55, = 0),0

=0

Solving gives

<0La vy O Cmg- O, 222
—7 CC

The variation of stick force with fra,ctional change in forward
speed is

c
¥ C3yClm, - 2‘)

P dF, H _Ohoqsoca_pS,c,ch,,u ( C’n0>
d@AVIVY Lru lru LrC,
If effects of slipstream on the tail are neglected, Cn =0.

Ch,
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As shown in appendix A, 0hu=—2%0—"“- Inserting these

values in the expression for Uy /u shows that F, is independent
of forward speed.

The variation of control force with normal acceleration in
a steady pull-up, with no change assumed in forward speed
(see reference 8), can be found from equations (2) by equating
to zero all terms containing D except 1. This procedure
implies that the normal acceleration is due entirely to
curvature of the flight path Ds. The equations become, for
an applied hinge moment,

Cr,
<5 a—2A,uD6 =0
Cn ot Cnp, D8 +Cnde=0

Ohaa_l_ (GhD9+h)D0+ Okaaa = 01':0

wl-'-ObaOma +h0La0ﬂl3+ G’hNOLaC’mb_mwﬂohaama_

from which

OhJOMDUCLq

Dy

OLaOma

If the normal acceleration is ng,

and

These formulas for F, and F, are equivalent to equation (1)
of reference 9 and equations (27) and (28) of reference 10.

The formulas indicate that the stick-force gradients F,
and F, are dependent on most of the aforementioned airplane
and elevator parameters. Figures 1 to 5 show the variation
of these stick-force gradients with the parameters 0,,%, Ch;,
Om, b, and p. The gradients are independent of speed,
although only within the limits of the assumptions made in
the analysis, namely, neglect of power and of compressibility
effects. The gradient F, can be used to get the stick force
for only a small change in forward speed because the stick
force is not directly proportional to the change in speed.
The stick force in a steady pull-up F,, however, is propor-
tional to the normal acceleration provided the control de-
flection is not so great that the basic assumption of linearity
is violated.

The line F,=0 is the boundary for true static stability—
that is, F,=0 is the condition for zero variation in stick
force with forward speed in steady flight. This condition
is the same as that obtained by setting F'=0, where I is
the constant term of the sixth-order stability equation
obtained from equations (1). On subsequent figures it is

called the divergence boundary. The line F,=0 is the
boundary for apparent static (or maneuvering) stability and
is the condition for zero variation in stick force in a steady
pull-up. This condition for F,=0 is obtained by setting
F=0 in the approximate stability equation (equations (3)),
which is for three degrees of freedom (o, D8, and 5,). On
the unstable side of F,=0, a slow divergence occurs that is
noticed by the pilot as an unstable variation of stick force
with forward speed. The stick force due to normal accelera-
tion in a pull-up is stable, however, unless the conditions are
such that the airplane is operating on the unstable side of
F,=0.

" Figures 1 to 5 indicate that the parameters have the same
effect on F, and F, except that the altitude affects only 7.
They show that the stick-force gradients on an airplane of
given tail size and center-of-gravity position may be in-
creased by making the floating tendency Oba, more positive

or by mass unbalancing the elevator control system to
depress the elevator (make it tailheavy). The effect of the
restoring tendency C,, on the stick-force gradients depends
on the relative position of the center of gravity and the
aerodynamic center. If the center of gravity is ahead of
the aerodynamic center (airplane stable with controls fixed),
increasing the magnitude of (), increases the stick-force
gradients. If the center of gravity is behind the aerody-
namic center, this effect on F, is reversed; the effect on F,
is not reversed, however, until the center of gravity is well
behind the aerodynamic center (in this case, about 0.05¢ at
sea level and 0.02¢ at 30,000 feet). If C»=0, the stick

forces are independent of the position of the airplane center

of gravity.
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Increase in altitude will either increase or decrease Fj,
depending on the hinge-moment parameters. The solid
line in figure 5 is the locus of values of Cj, and Cj; for which

F, is independent of altitude. For points to the left of this
line, F, decreases with altitude; for points to the right of
this line, F, increases with altitude. This line is determined
by the relation

C

™pg

Ozaa’=m0ﬁ5

which, for the case of figure 5, becomes
Opa‘=1.500),a

Another method of increasing the stick-force gradient in
level flight F, consists in applying & constant hinge moment
to the elevator by means of a spring or bungee. The effect
of the spring on the gradient F, is due to the derivative
Ch, which depends in the same way on the constant hinge
moment, whether it is caused by a weight or by a spring. A
bungee, which tends to depress the elevator, will therefore
increase the stick-force gradient in level flight F.. The
effect of the bungee on the stick-force gradient in accelerated
flight F, will be zero because its action depends solely on
changes in forward speed. Its effect on the short-period
oscillations will be zero for the same reason.

DYNAMIC STABILITY
NO FRIGTION IN CONTROL S8YSTEM

The stability of the short-period oscillations without
friction is shown in figures 6 to 11, which also show the
boundaries for true static stability (divergence boundaries).
Figure 6 is an example of & more nearly complete presentation
of the stability date than subsequent figures because it
shows the variation of damping and period of oscillation
with the hinge-moment paiameters G, and Ch, for certain

fixed values of the other parameters. The damping, which
is proportional to £, increases with the magnitude of Ch,

The period, proportional to -}—7, decreases as Oha, increases.

Another way of presenting this additional stability data is
shown in figure 7, which gives the number of cycles the oscil-
lation performs before it damps to half amplitude. It is
clear from figure 7 that the oscillation is very well damped
unless the restoring tendency is close to zero. In this parti-
cular case, only one oscillatory mode exists. Inasmuch as
there are only three roots in this case (because 1z and 4;,=0),
the other root is always real and is of no particular signifi-
cance in dynamic stability. In cases in which an additional
oscillatory mode exists, it is always stable.

The effect of center-of-gravity position on the stability of
the short-period oscillations is shown in figure 8. The shift
in the dynamic-stability boundary, for the comparatively
large shift in center of gravity shown, is practically negligible.
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Many of the subsequent figures, in which zero static stability
is assumed to facilitate computation, therefore are valid for
airplanes having a margin of static stability.

The effect of moment of inertia of the elevator control
system on the dynamic stability is shown in figure 9, which
gives typical values of the moment of inertia. The eoffect is
slightly destabilizing especially for high values of C’;,u‘. The

destabilizing effect of the moment of inertia of the elevator
is greater than that of the moment of inertia of the control
stick. Because the accuracy gained by including moment
of inertia is small compared with the saving in labor gained
by neglecting it, moment of inertia of the elevator control
system was set equal to zero in the subsequent calculation.
As a result, the stability equation becomes a cubic and sub-
sequent figures are somewhat unconservative.

The effect of density parameter z on the dynamic stability
is shown in figure 10. Increase of u has a slight destabilizing
effect.

As has been shown, mass unbalance of the elevator control
system improves the static stability (fig. 4). The effect on
dynamic stability is unfavorable, however, as shown in
figure 11. The value of mass unbalance shown corresponds
to a bobweight that is located at the airplane center of
gravity and requires a balancing pull of 37 pounds on the
control stick of a pursuit airplane at sea level. Increasing
oscillations occur if the aerodynamic balance is too high
(low magnitudes of C4;), especially for negative values of C,_.

The effect of the location of the bobweight is shown in
figure 12. Each curve represents a different arrangement
of bobweights and all arrangements give the same stick
force. The solid line corresponds to a weight at the air-
plane center of gravity (for practical purposes, at the control
stick). The short-dash line corresponds to a weight at the
elevator. The long-dash line corresponds to two weights—
one at the elevator, which tends to make it noseheavy; the
other at the control stick, which gives the elevator a suffi-
ciently powerful tailheavy moment that the resultant stick
force is the same as with the single weight. In the particu-
lar case represented, the noseheavy moment due to the
weight at the elevator is equal to the tailheavy moment due
to both weights. Moving the single weight from the con-
trol stick to the elevator has a large destabilizing effect.
Overbalancing the elevator while the stick force is kept
constant has a considerable stabilizing effect. This method
of preventing instability has the disadvantage, however, of
increasing the total amount of unbalancing weight required.
In the case shown, the weight is increased to three times its
original size. Another disadvantage is the rearward shift in
center of gravity of the whole airplane due to additional
weight at the elevator. (See airplane parameters given in
“Method of Analysis.”’) The destabilizing effect of the in-
creased moment of inertia associated with the added weights
was found to be very small, especially for negative floating
tendency.
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EFFECT OF VISCOUS FRICTION IN CONTROL SYSTEM

In the preceding section, a constant value of the elevator-
damping parameter C,,, was assumed. This value was due
only to aerodynamic damping. The effects of viscous fric-
tion in the elevator control system are obtained by consider-
ing O, 88 an additional variable. This variable can be

introduced, as in the preceding section, by showing a series
of boundaries in the O’;-,mt()',‘,‘s plane for various values of

Chps»  The general nature of the effect of friction is shown
first, however, by presenting boundaries in the C3,C,,
plane with 0y, constant and some other parameter varied.

This method of presenting stability boundaries makes it
casier to show the effects of other parameters such as air-
plane center-of-gravity position and density when friction
is introduced.

The effect of viscous friction on the dynamic stability,
for various conditions, is shown in figures 13 and 14 for
p=12.5 and u=37.5, respectively. Figures 13(a) and 14(a)
refer to the mass-balanced elevator control system; figures
13(b) and 14(b) refer to the tailheavy elevator control
system considered in the preceding section. It is shown that,
if the airplane center of gravity is ahead of a certain point,’
the instability caused by the unbalanced elevator can be
removed by adding viscous friction to the control system.
This critical center-of-gravity position is behind the aero-
dynamic center, and its distance from the aerodynamic
center decreases as the density parameter p increases.
When the center of gravity is behind this critical position,
viscous friction has a destabilizing effect. These opposite
effects of viscous friction are shown in the C’ha‘ C»; plane in
figures 15 and 16. 'When the center of gravity is slightly
ahead of this critical position, the effect of viscous friction
depends on its magnitude and also on the value of C,,. The
addition of a small amount of viscous friction is destabi-
lizing but larger amounts are stabilizing. If the aerodynamic
balance is sufficiently high (C,~0) and the viscous friction
lies in a certain range, increasing oscillations will occur.
In figure 14(b), for example, if z, ,.=—0.01¢c and C,,=—0.05,
the oscillations will be unstable when the ele vator-damping
parameter is in the range from —2.5 to —76. If G, is
more negative than —0.086, no amount of elevator damp-
ing can cause increasing oscillations. As the center of
gravity moves forward, the destabilizing effect of elevator
damping becomes less and finally disappears.

The effect of the density parameter p can be seen by com-
paring figures 13 and 14. The critical center-of-gravity
position approaches the aerodynamic center as p increases.

1 8ince thisreport was written, this point has been found to be where ad—‘—o, sometimes called
the stick-fixed maneuver point. n

When p=12.5, elevator damping always has a stabilizing
effect provided z,.. is positive. When u=37.5, elevator
damping may be destabilizing over & small range of C,,
and C,, even when z,... is positive (0.05¢).

‘When the center of gravity is slightly ahead of the afore-
mentioned critical position (which is behind the aerodynamic
center), the conditions under which elevator damping meay
cause dynamic instability may be advantageously repre-
gented in the 0;,%038 plane. If a series of stability boundaries

are drawn in that plane for various values of elevator damp-
ing, they will all be confined to a region bounded by a line
that will be called the boundary of complete damping. An
illustration of two methods of constructing this boundary is
given in figure 17. If a series of boundaries in the Oba,oha

plane are drawn for various values of the damping, the com-
mon tangent of all these curves is the boundary for complete
damping. This boundary can also be drawn by plotting the
minimum values of C;, obtained from plots of the type shown

in figures 13 and 14 against corresponding velues of C’h,‘-
The region in the O,G‘O,,a plane between the boundaries for

complete damping and increasing oscillations is the region
where the addition of viscous friction to the elevator control
system may cause dynamic instability.

That a boundary for complete damping cannot be shown
for p=12.5 if the airplane is statically neutral or stable (z,...
is zero or positive) may be seen from figure 13. It is possible
however, to show & boundary for complete damping under
these conditions for u=37.5. Figure 18 shows these bound-
aries for z;.=0 and for the critical value z,.=—0.017¢,
for both a mass-balanced elevator and a mass-unbalanced
elevator. The boundaries for increasing oscillations and
divergence are also shown. For the case of the mass-balanced
elevator (A=0), the boundary for complete damping is a
straight line through the origin and therefore corresponds
to a fixed ratio of the floating and restoring tendencies,
or floating ratio. Elevator mass unbalance decreases the
region of complete damping.

EFFECT OF SOLID FRICTION IN ELEVATOR CONTROL SYSTEM

The boundary for complete damping has an important
bearing on the effect of solid friction on dynamic stability.
In order to calculate this effect, the solid friction is replaced
by an equivalent viscous friction that would dissipate energy
at the same rate. This condition gives an equivalent

4 Oh_r

o

4)

for a sinusoidal motion of the elevator with amplitude 5 and
angular frequency 1.
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F1GURE 17—Method of constructing boundary for complete damping.

It can be shown that if viscous friction is destabilizing, as
in figures 16 to 18, solid friction may lead to steady oscilla-
tions having an amplitude proportional to the amount of
friction. Suppose an oscillation is started with amplitude
and frequency which result in an equivalent G, that would
cause increasing oscillations. ILet this condition be repre-
sented by point 2 in figure 19. The amplitude of the oscil-
lations would then increase until the equivalent C,, de-
creased to the value that would result in neutrally damped
oscillations, represented by point 3 in figure 19. If the
initial amplitude is so low that the equivalent viscous fric-
tion is in the stable region, as shown by point 1, the oscilla-
tions will die out completely. If the initial amplitude is so
high that the oscillations are stable, represented by point 4,
the amplitude will decrease until it reaches a constant value,
when the equivalent C,, is again represented by point 3.
The value of C,,, at point 3 then determines the amplitude

of the steady oscillations. By solving formula (4) for 3, the
amplitude of the steady oscillation is obtained as

_4 0‘!

~ 10
where 5 and C,,, are the values at point 3. This formula

shows that the amplitude is proportional to the amount of
solid friction.
The foregoing analysis shows that the region in the C’,,a‘C’,,J

plane between the boundary for increasing oscillations and
the boundary for complete damping is the region where
steady oscillations may occur because of the influenco of
solid friction in the control system. All the remarks in the
preceding section concerning the boundary for complete
damping with viscous friction consequently apply to the
boundary for steady oscillations with solid friction, inasmuch
as these two boundaries are the same, within the limits of
the assumptions involved in the use of the concept of equi-
valent viscous friction. Steady oscillations due to solid
friction will not occur on & statically neutral or stable air-
plane, for instance, unless p is very large (corresponds to a
high altitude). Even in that case, the possibility of steady
oscillations exists only for a comparatively small range of
floating ratios. If the airplane is statically unstable by a
sufficient amount, however, steady oscillation may exist
over the entire range of floating ratio.

Some calculations of the amplitude of the steady oscilla~
tions, expressed in terms of normal acceleration per unit
frictional force as felt at the control stick, were made by the
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method of appendix B. Theresults are presented in figure 20,
which shows lines of constant amplitude in the 0’,,%0,,8

plane for an airplane with the center of gravity at the critical
position referred to in the preceding section. Steady oscilla-*
tions will therefor occur throughout the entire region where
stability exists in the absence of friction. The amplitude
is smallest for high values of C',,a‘ combined with high

values of C,.
CONCLUDING REMARKS

The stick-free static stability of & conventional airplane
may be improved by making the elevator floating tendency
more positive or by mass-unbalancing the elevator control
system to make the elevator tailheavy. Increasing the
restoring tendency also has a favorable effect provided the
airplane is stable with stick fixed. If the restoring tendency
is zero, the stick-free static stability is independent of air-
plane center-of-gravity position.

The dynamic stability with frictionless controls depends
chiefly on the restoring tendency C), and on the mass balance
of the elevator control system. If the elevator control
system is mass unbalanced (elevator made tailheavy) by an
offset weight at the control stick and if the restoring tendency
is too low, increasing short-period oscillations may result.
This condition can be remedied by the use of two additional
weights—one at the elevator making it noseheavy, the other
at the control stick making the elevator sufficiently tailheavy

that the combined effect gives the elevator the desired amount
of tailheaviness.

The addition of viscous friction to the control system will
prevent dynamic instability provided the airplane center of
gravity is forward of a critical position which is behind the
aerodynamic center and approaches it as the value of the
density parameter p increases. If the airplane center of
gravity is behind this critical position, viscous friction will
bhave a destabilizing effect, no matter what the hinge-
moment parameters are. If the center of gravity is slightly
ahead of the critical position, viscous friction may be de-
stabilizing for a limited range of values of viscous friction and
the hinge-moment parameters. A low restoring tendency
and a high positive floating tendency will tend to cause this
dynamic instability. When g is very large (high altitude),
this condition of steady oscillations can occur even if the
center of gravity is ahead of the aerodynamic center.

The presence of solid friction in the control system may
cause short-period steady oscillations under the conditions
for which viscous friction is destabilizing. The amplitude of
the oscillations is proportional to the amount of friction
present.

LANGLEY M EMORIAL AERONAUTICAL LLABORATORY,
NaTioNAL ApVvisOorRY COMMITTEE FOR AERONAUTICS,
LancrLey Fierp, Va., December 23, 1943.
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APPENDIX A
EVALUATION OF STABILITY DERIVATIVES

Derivative C,, —The total hinge moment acting on the
elovator may be expressed as

H=(Cra+Chie) 5 oVSecrt Hug

H,=2E = (0, .+ o) 0VS e
dV

At trim H=0, therefore,

Ohda_‘_ 0h550= __T_Hi‘g_
9 PVESacc
Hym— 2 V8= —254
§ PWS,G,
1
W VIV T oVSwee pVESee
If Ho=}L‘S;cc£J
C’hu= —%

Using % V20,80 =mg gives

C ____hchOLSw_____ hCL
e 2mg - 2Aw#

Derivative COn_—The parameter Cn, may be obtained
from wind-tunnel measurements or, if the position of the
gerodynamic center of the complete airplane is known, may
be calculated by the formula

Oma= _ OLa;zaoco

Derivatives O, and Omp2,—The derivatives Cn,_ and
Opnpy, arise because of the lag between the change in angle
of attack at the wing and the corresponding downwash at
the tail. It is assumed that the downwash at any instant ¢

depends on the angle of attack at the instant t—-%}': the differ-

ence being the time required for the air to move from the
wing to the tail. If a=#(f), this relation may be expressed
as

e=c, f(t—Al)

where
Ly
Af= v
Now,
f—an=f0—atr O+ 50— . ..
Hence,

e=ea|:a—At&+£A2—t)—2- a— . . :]

or, because iz=2—g¢7 De and 'd=4—g; DPo,

2
=€, (a——l;, Da-l-%—i Dia— . . )

and, because a,=a—¢,

12

A= €q (a—lh Da-—l——z—! Da— . . )
and
2
ay=c(l—ez)teds Da-——eal%D’a—l- e

The part of the pitching-moment coefficient contributed
by the tail is

Com—Ci,, 25 e

——0, 25 [ a—c)teds Da—en & 12
L'G;ZS,, €a » o fa2 a.'..
The lag effectively introduces derivatives Cnp,, Cnp2yy - - « «
The first two of these derivatives are
L8
G’“Da=_0‘t‘l¢‘ '5—;57“: €

and

N

C”"D’a= GLra[ Z‘ 'S?; €a
347
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Derivatives Gy, Cap,» and Chpe,. —The derivatives OCia,
Chp.» 80d Chye, may be obtained from

C’h= Ohalat
—C,_(1—e)a+Cs_edsDa—0, e’ Dia
« ap a;
which gives

Gba= Gka‘(l - Ea)

ChDa= Oha‘ealh
— I
Crpee=—Crp a5

Derivative (' ,—The pitching moment due to pitching
is made up of parts due to propeller, wing, fuselage, and
horizontal tail. The contribution of the tail is by far the
largest and can easﬂy be calculated.

If the airplane is rotating with an,,ular _velocity 9, the

increase in angle of attack at the tailis L, T,—: which results

in an increased lift on the tail given (in coefficient form) by
I ]
GL l= GL ‘at A 7

The resultant pitching-moment coefficient is

OL,,S,
VeS,

Ly S:_

Cu=—C, 2 5=

—C te; Ly
. 2
and expressing § as 2—;—7170 and 1%'—5 as I, gives

Cne—0,, = 5S:ipg

T2y 2 S,

The contribution of the wing depends on the assumed
axis of rotation (center of gravity) but a fair average value
will be obtained by assuming that the center of gravity is
at the wing quarter-chord point. This assumption gives a
value

T
Cn= % Do

The total pitching-moment coefficient due to pitching
therefore is

L S,

ki
Onpe= 3O, 25,

mpé

Derivative Cn,—The derivative Cn, may be measured
directly in & wind tunnel or may be computed from wind-

tunnel data on the value of Cy, for the horizontal tail by

means of the formula

_ L S,
0“'3__0L‘8 2 S
Derivative Cn,,.—The derivative (., may be computed
from
DOL bOL l_), S; C_[
[(bDa + 0%,( 5T

where (g%; 2 and (g—g;)g may be obtained from figure 1

of reference 11, which is based on thin-wing potential-flow
theory.

Derivative Cy,,—The derivative C,,, is given by
Ohm=0ba ‘lh

In the absence of viscous friction in the elevator control
system, the value of C,,, may be computed from

[G). e (300 %

and (%)B may be obtained from figure 1

GhD‘; (Al)

where (g—g‘—;
of reference 11.
If a dashpot, which has a damping constant of X pounds
per foot per second and moves a distance of @ feet per
radian of elevator deflection, is inserted in the control
system,
4PK

"p8 pVSicee (42)

The total value of C,, is the sum of equations (A1) and
(A2).

Derivatives Oha, and C,,—The derivatives Oka, and G,
can be calculated by thin-wing-section theory but the
results are of doubtful accuracy because of three-dimensional
and boundary-layer effects. It is therefore best to obtain
these derivatives from wind-tunnel tests.



APPENDIX B
CALCULATION OF NORMAL ACCELERATION DUE TO OSCILLATING ELEVATOR

Tho normal acceleration of the airplane, which 18 equal to D(e—#6) in nondimensional units, can be calculated from

D(a—8

- 035 OLa_ OLaOnDa'm"

5 Chn,,C G '
s 2 [_ ’L?j@ - 2Awl-‘0na— 772 (4Aw2l-"2k 12_ Om D2a2Awﬂ) +'2,17 (— 2A=I‘ Ou Do + 2Awl-’-k vg_zL—a - 2Aw#0m Da)]

where 7 is the angular frequency of the elevator.

B1)

The fraction in equation (Bl) can be reduced to an ordinary complex number and the modulus of this number is the

maximum amplitude of the steady oscillation.

The value can be converted to physical units by the formula

Normal acceleration perg__ 4lr D(a—6) 4

Stick friction 1n pounds

pSeccg 5 w0y,

where Oy, is the value of elevator dampirg required for the condition of neutral dynamic stability.
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